curvilinear$503207$ - ορισμός. Τι είναι το curvilinear$503207$
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι curvilinear$503207$ - ορισμός

COORDINATE SYSTEM WHOSE DIRECTIONS VARY IN SPACE
Curvilinear; Parametric coordinates; Parametric coordinate; Parametric coord; Lamé coefficients; Curvilinear coordinate system; Curvalinear coordinate systems; Orthogonal curvilinear coordinates; Curvilinear coordinate; Lamé coefficients (curvilinear coordinates)
  • <span style="color:black">'''Cartesian'''</span>]] (left) coordinates in two-dimensional space
  • Fig. 1 - Coordinate surfaces, coordinate lines, and coordinate axes of general curvilinear coordinates.
  • Fig. 3 – Transformation of local covariant basis in the case of general curvilinear coordinates
  • Fig. 2 - Coordinate surfaces, coordinate lines, and coordinate axes of spherical coordinates. '''Surfaces:''' ''r'' - spheres, θ - cones, φ - half-planes; '''Lines:''' ''r'' - straight beams, θ - vertical semicircles, φ - horizontal circles;

'''Axes:''' ''r'' - straight beams, θ - tangents to vertical semicircles, φ - tangents to horizontal circles
  • isbn=0-7167-0344-0}}</ref>

Curvilinear         
·adj Consisting of, or bounded by, curved lines; as, a curvilinear figure.
Curvilinear coordinates         
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible (a one-to-one map) at each point.
curvilinear         
[?k?:v?'l?n??]
¦ adjective contained by or consisting of a curved line or lines.
Derivatives
curvilinearly adverb
Origin
C18: from L. curvus 'bent, curved', on the pattern of rectilinear.

Βικιπαίδεια

Curvilinear coordinates

In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible (a one-to-one map) at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name curvilinear coordinates, coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved.

Well-known examples of curvilinear coordinate systems in three-dimensional Euclidean space (R3) are cylindrical and spherical coordinates. A Cartesian coordinate surface in this space is a coordinate plane; for example z = 0 defines the x-y plane. In the same space, the coordinate surface r = 1 in spherical coordinates is the surface of a unit sphere, which is curved. The formalism of curvilinear coordinates provides a unified and general description of the standard coordinate systems.

Curvilinear coordinates are often used to define the location or distribution of physical quantities which may be, for example, scalars, vectors, or tensors. Mathematical expressions involving these quantities in vector calculus and tensor analysis (such as the gradient, divergence, curl, and Laplacian) can be transformed from one coordinate system to another, according to transformation rules for scalars, vectors, and tensors. Such expressions then become valid for any curvilinear coordinate system.

A curvilinear coordinate system may be simpler to use than the Cartesian coordinate system for some applications. The motion of particles under the influence of central forces is usually easier to solve in spherical coordinates than in Cartesian coordinates; this is true of many physical problems with spherical symmetry defined in R3. Equations with boundary conditions that follow coordinate surfaces for a particular curvilinear coordinate system may be easier to solve in that system. While one might describe the motion of a particle in a rectangular box using Cartesian coordinates, it's easier to describe the motion in a sphere with spherical coordinates. Spherical coordinates are the most common curvilinear coordinate systems and are used in Earth sciences, cartography, quantum mechanics, relativity, and engineering.